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1. INTRODUCTION

Recently, there has been a good deal of interest in extensions of a beautiful
and well-known result of J. L. Walsh [4, p. 153] on the overconvergence of
differences of interpolating polynomials. As background for Walsh's result,
let p > 1 be a fixed real number, and let

A p := {f(z): f is analytic in IZ I<p and has a singularity on IZ I= p}. (1.1)

Further, let Z = {zk,n} be an infinite triangular interpolation matrix whose
entries satisfy

(k = 1,2,..., n; n = 1,2,... ), (1.2)

Then, for any fEAp, let Pn_l(Z,Z,f) denote the unique polynomial (of
degree at most n - 1) which interpolatesfin the n points {zk,n}Z=t of the nth
row of Z, i.e"

k = 1,2,..., n; n = 1,2,.... (1.3)

We do not assume that the entries {zk, n }Z= 1 in the nth row of Z are distinct.
In the case of repeated points in the nth row of Z, the interpolation in (1.3)
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will be understood to be in the Hermite (derivative) sense. When the entries
in each row of Z are just the nth roots of unity, i.e" when

Zk,n:= exp{2nki/n}, k = 1, 2,..., n; n = 1, 2,...,

the associated triangular interpolation matrix will be denoted by E.
Similarly, 0 denotes the triangular interpolation matrix all of whose entries
are zero.

Next, if fez) in A p has the expansion fez) = I:j~O ajz
j

in Izi <p, let

n-I

Pn-1(z,f):= L ajz
j
,

j=O

n = 1,2,... , (1.4 )

be its (n - 1)st partial sum (so that Pn-l (z, j) = Pn -I (z, 0, f».
With this notation, Walsh's result is

THEOREM A [4]. For any fE A p ' there holds

lim {Pn_l(z,E,j)-Pn_l(z,f)} =0,
n .... oo

(1.5)

the convergence being uniform and geometric on any closed subset of
Iz I<p2. More precisely, for any r with p ~ r < 00, there holds

(1.6)

Further, the result of (1.5) is best possible in the sense that there is some
!EA p and some i with lil=p2 for which the sequence {Pn_l(i,E,!)­
Pn-1(i,!W:;'=1 does not tend to zero as n-+ 00.

Recently, CavareUa, Sharma, and Varga [1] have generalized Walsh's
Theorem A in several directions. For one of their results, define, for each
positive integer I, the polynomial

n-l I-I

Qn-I,I(z,f):= L L ajn+kzk,
k=O j=O

(1. 7)

which is of degree at most n - 1. Then, Walsh's Theorem A is the special
case 1=1 of

THEOREM B [1]. For any fE A p and for any positive integer I, there
holds

lim {Pn-l(Z, E,f) - Qn-I I(z,f)} = 0,
n ..... co •

for all Izi <pl+l, (1.8)
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the convergence being uniform and geometric on any closed subset of
Izi <pl+l. More preciselY,for any r with p:S;;; r < 00, there holds

I !
lin

lim max IPn-l(z,E,f)-Qn_1 l(z,J)1 :s;;;rjpl+l.
n-+oo Izl=r '

(1.9)

Further, the result of (1.8) is best possible in the sense that there is some
JE Ap and some i with Ii I= pi+ I for which the sequence {pn_ I (i, E, J) ­
Qn_I,I(i, J)}~=I does not tend to zero as n -.. 00.

It has been conjectured by Saff and Varga that the quantity p2 in (1.5) of
Walsh's Theorem A is maximal for any interpolation matrix Z satisfying
(1.2). More precisely, their conjecture is

CONJECTURE C [3, Chapter 4]. Let Z = {Zk,n} be any triangular inter­
polation matrix satisfying (1.2). Then, there is no a> p2 for which

lim {Pn_I(Z, Z,J) - Pn_l(z,J)} = 0,
n-+ OCJ

for aUlzl < cr, andfor aUfEA p ' (1.10)

We remark that some condition on the matrix Z, such as the first
inequality of (1.2), is necessary, as the following example shows. For any
fixed a > 0, let Ea denote the triangular interpolation matrix whose entries
zk,n(a), in its nth row, are defined to be nth roots of an. In this case, the
analog of (1.5) of Theorem A can be verified to be

(1.11)

Obviously, p2ja >p2 for any a with 0< a < 1. Consequently, (1.10) of
Conjecture C then fails for Ea when °<a < 1, but in this case, the inter­
polation points Zk,n(a) do not satisfy the first inequality of (1.2).

Actually, our first result (Theorem 1) shows that the Saff-Varga
Conjecture C is valid, even in the more general setting of Theorem B (with
pl+ I replacing p2), and under a weaker hypothesis than (1.2). Specifically,
consider any triangular interpolation matrix Z = {zk,n} which satisfies

(k = 1,2,..., n; n = 1,2,... ). (1.12)

Associated with the nth row of Z is the monic polynomial of degree n,

n

wn(u) = wn(u, Z):= n (u - zk,n)'
k=1

n = 1,2,.... (1.13)
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Let

!
Wn(P, Z),

Yn(P, Z):= modulus of the first nonzero term of (P) n
wn ,Z -p ,

349

if I> 1,
if 1= 1.

(1.14)

Note that since wn(u, Z) is monic, then Yn(P, Z) is well defined for all I> 1,
and Yn(P, Z) >0 for all n = 1,2,.... However, if wn(u, Z) = un and if 1= 1,
then all terms of wn(P, Z) - pn are zero, and Yn(P' Z) is defined to be zero in
this event. Our assumption on Z, in addition to (1.12), is that

p = p(p, Z):= lim y~/n(p, Z) ~ 1.
n...,oo

(1.15)

Next, as a quantitative measure for the largest disk doma,in of uniform and
geometric convergence to zero for a particular triangular interpolation matrix
Z, of the differences of the interpolating polynomials (cf. (1.3) and (1.7» for
all f E A p ' we set

L1lr, p, Z):= sup lim
lEAp n...,oo ! !

lin

max IPn-I(Z,Z,f)-Qn-I.I(Z,f)1 ,(r>p).
Izi =r

(1.16)

Obviously, from (1.9) of Theorem B, L1 1(r, p, E) ~ r/pl+ I, and as explicit
calculations in [1, p. 158] give the reverse inequality, then

L1lr, p, E) = r/pl+ I,

With this notation, our main result is

(r >p). (1.17)

THEOREM 1. Let Z = {zk.n} be any triangular interpolation matrix
satisfying (1.12) and (1.15). Then, for each complex number i with

Iii> pl+l/p,

there is an J in A p for which the sequence

{Pn_l(i, z,J) - Qn_I.I(i,J)}~=1

is unbounded. In addition (cf. (1.16», there holds

(1.18)

(1.19)

for all r >p. (1.20)

The proof of Theorem 1 will be given in Section 2. Before proceeding to
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other results, we consider some applications of Theorem 1. First, suppose
that the entries of the triangular interpolation matrix Z satisfy (1.2). As the
constant term of wn(u) is in modulus at least unity in this case, then
Yn(P, Z) ~ 1 for all n ~ 1 and all I~ 1, so that (1.15) is clearly satisfied.
Thus, as fJ ~ 1 from (1.15), then Theorem 1 gives, for each complex number
i with Iii> pl+1, that the sequence in (1.19) is unbounded for somejin Ap •

This of course establishes the validity of Conjecture C as a special case of
I = 1 of Theorem 1.

Continuing, it is evident that the special interpolation matrix E satisfies
(1.15) with fJ = I for any I~ 1, so that for each complex number i with
Iii> pl+l, the sequence

is unbounded for some jE Ap • This should be contrasted with the recent
result of Saff and Varga [2, Theorem 1] which establishes that, for each
lEAp, the sequence

can be bounded in at most I distinct points in Iz I>pi + I.

Next, to show that the hypothesis (1.15) can allow multiple interpolations
in Iz I< 1, suppose that the triangular interpolation matrix i is such that its
associated polynomials (cf. (1.13)) are given by

In this case,

n = 1,2,.... (1.21 )

(P Z-) In-IYn' = 'iP , for all n ~ 1, all I ~ 1,

so that (1.15) is valid with fJ = p, for any I ~ 1. On the other hand, we see
that

for all n ~ 1, all I ~ 1,

so that (1.15) is not satisfied for any 0 <a < 1.
Next, recall that (1.20) of Theorem 1 gives that

for all r > p. (1.22)

Our interest now is in specifying sufficient conditions on the matrix Z so that
equality holds in (1.22) for all r >p. As we shall see in Theorem 2 below,
there is a whole class of matrices Z for which equality holds in (1.22) for all
r >p. Thus, for this class of matrices, one has from Theorem I the optimal
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disk domain of uniform and geometric convergence to zero, for the
associated differences of interpolating polynomials (cf. (1.9», for all fE A p •

THEOREM 2. Let the triangular interpolation matrix Z = {z k. n} satisfy
(1.12) and

IZk,n - exp(2nik(n) I~ l(pln (k = 1,2,..., n; n = 1,2,... ),

for some positive integer l. Then,

(1.23)

for all r >p. (1.24)

Thus, on any closed subset H of IZ I <pi + 1, the sequence

(1.25)

tends to zero for all z E H and all f E A p' while for each i with Ii I> pi + I,

there is an j E A p for which the sequence

( 1.26)

is unbounded.

The proof of Theorem 2 will be given in Section 3. In essence, Theorem 2
states that if the interpolation points zk,n are sufficiently close to the nth
roots of unity (cf. (1.23)), then an "optimal" interpolation matrix is
obtained. For related results, see [I, Section IOJ.

Finally, to show that the type of assumption of (1.23) of Theorem 2 is
reasonable, we include the following related result, whose proof will be given
in Section 4.

THEOREM 3. For each J> 1, let the triangular interpolation matrix
Z = {Zk,n} satisfy (1.12) and

IZk,n - exp(2nik(n) I~ I(l5n

Then, for each positive integer I,

(k = 1,2,... , n; n = 1,2,... ). (1.27)

r
L1tCr, p, Z) ~ . (p' 15)p·mm ;

(r >p). (1.28)

Moreover, the inequality in (1.28) is sharp, in that for each 0 > 1, there is a
triangular interpolation matrix i = {ik,n} satisfying (1.12) and (1.27), for
which equality holds in (1.28).
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2. PROOF OF THEOREM

fu(z):= 1/(u - Z), where lul=p. (2.1 )

Clearly, fu is an element of A p for any choice of the complex number u with
IuI= p, and a simple computation from (1.3) and (1. 7) shows that

(u/n - 1)(un _ zn)
Qn-I./(z,fu) = (un-l)(u-z)u/n'

(2.2)

for any n ~ 1. Thus, for any z with Iz I= r >p, we have

(2.3)

where

(2.4)

is a polynomial in u.
If j(n) denotes the precise number of {zk.nIZ=1 which are zero in the nth

row of Z, then 0 ~j(n) ~ n, and we can write

(2.5)

With (2.4) and (2.5), we can similarly write

(2.6)

where

Obviously, from (2.5) and (2.6), we have that

n = 1,2,....

We next write wn(u):= nz:{(n> (u - z~.n)' where 0 < IZ~,nl <P if j(n) < n,
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and where wn(u) == 1 if j(n) = n. For any complex number U= peiIJ
, () real

and arbitrary, it is evident that

Iu - z~.nl = Ip - z~.ne-i91 = Ip - z~,n ei9 1= Ip _ z~;U I,
so that Iwn(u)! = nz:~(n) Ip - (ztn u)/pi for all IU1= p. Setting

- nn(u;z)
Rn(u; z):= nn j(n) (p - C' )!)'

k~l zk.n u P
(2.8)

then Rn(u; z), as a function of u, is analytic in lui <p2/(maxk Iz~ nI). But, as
Iztnl <p for all1~k~n-j(n), then Rn(u;z) is analytic in lukp. Thus,
from the above discussion, there holds

I
Qn(u; z) I -

max () = max IRn(u; z)l.
lui ~p W n U lui ~p

Next, with the hypothesis of (1.15), choose any i with

.ul i l>p/+1, (2.9)

and fix i. Then, let un = unCi) denote a point on Iu I = p where IRn(u; i) 1

attains its maximum. With the maximum principle and (2.8), there holds

(2.10)

Now, from (2.7), it follows, with Iii =: r, that

Inn(O; i)1 = rnlwn(O)I,
= r n 1wn(O)I,
=0,

when I > 1,

when 1= 1 andj(n) < n,

when 1= 1 andj(n) = n.

However, from the definition in (1.14), we verify in all cases that the above
can be represented as

In (0' A)I= rnYn(P'Z)
n'z pi(n)

Thus, combining (2.3), (2.10), and (2.11) yields

(2.11 )
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for all n ~ 1. Again recalling the hypothesis (1.15), let e be an arbitrary
positive number such that(cf. (2.9))

CJ1 - f,) r >pi +I, where 1£1 = r, (2.13 )

and let {nj b~ I be an infinite sequence of positive integers with n I < n2< ...,
such that

Thus, from (2.12) and 2.14), we obtain

for allj ~ 1. (2.14)

(2.15)

for all j ~ 1, where, for convenience, we have set Jj(z) := fu (z) (cf. (2.1)). In
nj

what follows, we further define

(so that Pn <p for all n ~ 1). (2.16)

With the positive integer n1 of (2.14), consider fl(z) and the inequalities

where we choose any fJ ~ 2 such that

m>nl' (2.17)

fJ
12(r + p)

~ 1 + ( )r-p
and

fJ-l
a:= 3(r+p) > O. (2.18)

If the inequalities in (2.17) fail to hold for all m sufficiently large, there is a
sequence {mj}~2 of positive integers with n1 <m2<m3 <... for which

This, however, would imply from (2.13) that the sequence

(2.19)

is unbounded, the desired result of (1.19) of Theorem 1. Otherwise, we may
assume that there is an integer n~ from the sequence {nj }j~ l' associated with
(2.14), satisfying n~ > nI' such that (2.17) holds for all m ~ n~, and such
that
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Without loss of generality, we may assume that n~ = n2 of the sequence
{nj}~I' Next, considering!2(z), we similarly ask if

Again, if these inequalities fail to hold for all m sufficiently large, then the
sequence of (2.19), with!1 replaced bY!2' is again unbounded. Otherwise, we
may assume that there is an integer n~ from the sequence {nj}~ l' satisfying
n~ > n2, such that the above inequality holds for all m > n~, and such that

Again, without loss of generality, we may assume n~ = n3 in the sequence
{nj}~ I' Continuing inductively, either the unboundedness of the sequence of
(2.19) (for some fj) is obtained after a finite number of steps, or else the
infinite sequence {nj}~ I' associated with (2.14), satisfies

and for which

for allj> 1, (2.20)

where k = 1,2,....
Assuming (2.20) and (2.21), define

for allj > k, (2.21)

(2.22)

where Iunkl = p for all k> 1. Because nk > [Jnk - I for any k> 2 from (2.20),
it is evident that

for all k > j > 1, (2.23)

which gives that the series in (2.22) converges uniformly in Iz I <p. Thus,
j(z) is analytic in Izl <po Ifj(z):='L.t=ot2j zj

, then of course the radius of
convergence, R, of this Taylor expansion for j satisfies R > p. On the other
hand, it follows from (2.22) that

forj=O,I, ....

640/36/H
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Since IUn.1 = p, then
J
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With the inequalities of (2.23), it easily follows that

for j = 0, 1,...,

so that

lim la·1 1
/
j
~ lip.

n-HX) J

This implies that R ~ p, and as the reverse inequality was established above,
then R =p. Consequently,jhas a singularity on the circle Izi =p, andJis an
element of A p •

From the linearity of the operators involved and the triangle inequality, we
have, from (2.22), that

1Pnr1(i, Z, J) - Qnr1./(i, J)I ~ 8 1 - 8 2 - 8 3 - 8 4 , (2.24)

where

8 1 := ~IPn._,(i,Z,jj) - Qnrl./(i,jj)l,nj J

j-I 1
82:= {;I n

k
1Pnr,(i, Z'!k) - Qnj-l,/(i,fk)l,

00 1
8 3 := L -IPn_l(i, Z'!k)l,

k=j+1 nk J

and

From (2.15), we have

1 [(;.L-e)r]nj

81~() /+1 'r + p nj P

while from (2.21) we have

for allj ~ 1, (2.25)
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Applying the inequalities of (2.23) to the above sum yields

(2.26)for allj> 2.
a [ (J1- e) r ] nj

8 2 <, (fJ - 1) nj pl+ l '

Next, from the first equation of (2.2), from the definition of Pn in (2.16),
and from the fact that Iunl = P, it readily follows that

J

I ( A Z f, ) I~ (p +Pnl
j + (r +Pnlj

Pn.-I Z, , nk "" (p )n.( ) ,
J - Pnj J r - P

for all k >j + 1.

Since P+Pn <2r, and as r + Pn < 2r, the above implies that
J J

for all k > j + 1. (2.27)

Similarly, from the second equation of (2.2), we deduce

(1 + p-1nj)(pnj + rnj) 4rnj

IQnrl.I(i,Z,fn)l<, (pnj-I)(r-p) <, (pnj-I)(r-p)'

Since P >Pn > 0 and since P > 1, then (p - PnY <, pn <, 2(pn - 1) for all n
sufficiently large, so that

for all k >j + 1, allj large. (2.28)

Thus,

4(2r)nj 00 1
8 3 + 8 4 <, n· L -,

(p - Pn) J(r - p) k=j+ I nk

Again using (2.23) and (2.20),

for all k > 1, all j large.

~ 1 fJ 1 [{J1-e)(P-Pn)]n
j

L. -<, <, 1+1
k=j+lnk (fJ-I)nj+1 (fJ-I)nj 2p

so that

for all j sufficiently large.

On combining these inequalities and using the definitions of (2.18), we see
that

for all j sufficiently large,
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which implies from (2.24) that

(2.29)

for all j sufficiently large. Thus, from (2.13), we deduce that the sequence

{Pn_l(i, Z, J) - Qn-l.l(i, J)}::"= 1

is unbounded, the desired result (1.19) of Theorem 1.
To conclude the proof of Theorem 1, we simply note that the above

construction is valid for any choice of the complex number i with
Iii = r >p, and any e with 0 < e <p, so that (2.29) holds, in particular, for
any Iii = r >p. Thus,

-. 1 A A ilin (p - e) r
11m max IPn-l(z,Z,!)-Qn-l,{(z,!)1 ~ 1+1 '
n~oo Izl=r p

and as J is an element of A p' then from (1.16)

(r >p),

(p - e) r
Lfl(r, p, Z) ~ 1+ I '

P
for any r >p.

As e >0 is arbitrary, we thus have, with (1.17),

W
Lfl(r, p, Z) ~ lIT ~ Lfl(r, p, E),

P
for all r >p, (2.30)

which is the desired result of (1.20) of Theorem 1. I

3. PROOF OF THEOREM 2

With the assumption of (1.23), we have that

so that

for all k = 1, 2,..., n; n = 1,2,...,

(
l)n n (1 )n

1 + ---y,;- ~ n IZk.nl ~ 1 - ---y,;- ,
P k=1 P

for all n = 1,2,.... (3.1)
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By definition (1.14), it follows that Yn(P, Z) = nZ=J IZk,nl, so that from
(3.1 ),

lim y~/n(p, Z) = 1.
n~co

(3.2)

Consequently, as (1.15) is thus valid with fJ. = 1, we have from (1.20) of
Theorem 1 that

for all r >p. (3.3)

We next establish the reverse inequality of (3.3).
From Hermite's integral representation, there holds

for any!E A p ;

here, F:= {t: It I=R}, where Pn <R <po Note that since Pn '::;;; 1 +p- ln from
hypothesis (1.23), then R can be chosen arbitrarily in 1 <R <p, for all n
sufficiently large. Next, since wn(t, E) = tn - 1 for n = 1,2,..., it similarly
follows (cf. [1, p. 157]) that

1 (!(t) ) [ t
n

- zn ]
Pn-I(Z,E,f)-Qn-l.l(Z,f)=2nif

r
t-z (tn_I)tln dt=:1 1 , (3.5)

and that

(3.6)

where

1
2
:=_1 J' (!(t)) (zn -1 ) [1- ( t

n
-1 ) (Wn(Z,Z))] dt. (3.7)

2ni r t - z tn - 1 wn(t, Z) zn - 1

Now, by definition, we can write that

(
t - eXP(2nikjn)) ( z - zk.n ) _ 11

t - zk,n Z - exp(2nikjn)

\ 1 + zk.n - exp(2nikjn) I . \1 + exp(2nikjn) -:- zk,n I _ 1 I.
I t-zk,n \ I z-exp(2mkjn) \

T:= I( t
n

- 1 ) (Wn}z, Z)) _ 1 ,
wn(t, Z) Z - 1

=Illi
= Illi

640/36/4- 7
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With hypothesis (1.23), we have \Zk.n - exp(21likjn)\ ~ p-/n, while
It - zk.nl ~ R - Pn and Iz - exp(21likjn) I~ r - 1 >R - Pn' for all n
sufficiently large, where Iz I= r >p. Hence,

(3.8)

for all n sufficiently large, (3.9)

for all n sufficiently large. Thus, if M:= max ltl =R I/(t) I, the integral 12 in
(3.7) is bounded above in modulus, using (3.8), by

M . R ( r
n + 1 ) 6n

II21~(r_R) R n-l p/n(R-Pn)'

while the integral II in (3.5) is similarly bounded above in modulus by

(3.10)

Hence, from (3.6), (3.9), and (3.10), it easily follows that

but as the left side is independent of the choice of R in 1 <R <p, we can let
R approach P, giving

- l (I/n r
lim max lpn_l(z,Z,f)-Qn_l,/(z,/)1 ~ (/+I)n'
n~OCJ Izi =r p

for any r >p and any IE A p • Consequently, from the definition in (1.16),

Thus, with (3.3), we have

r
LJ/(r, p, Z) = (/+ I)n '

p

for all r >p.

for all r >p,

(3.11 )

(3.12)

the desired result of (1.24) of Theorem 2, and (3.12) directly gives (1.25) of
Theorem 2. Finally, as f.J = 1 from (3.2), then (1.26) follows directly from
(1.19) of Theorem 1. I
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4. PROOF OF THEOREM 3
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If the triangular interpolation matrix Z = {zk.n} satisfies (1.12) and (1.27)
with 0). pi, then (1.24) of Theorem 2 gives that

r r
AI(r, p, Z) = ---y:j:T = . (pI ;:)

p p·mm;u
(r >p),

which gives a stronger form of the desired result of Theorem 3. Thus, we
may assume in what follows that b satisfies I <b <pl.

On similarly using the integral representation of (3.4) and the definitions
in (3.5}-(3.7) from the proof of Theorem 2, it easily follows that the
hypothesis of (1.27) of Theorem 3 yields that Pn ~ I +b- n and that
(cf. (3.8»

(4.1 )

for all n sufficiently large, where R can be chosen arbitrarily in 1 <R <p.
Similarly (cf. (3.9»,

(4.2)

for all n sufficiently large, and (cf. (3.10»

(4.3)

Thus, as in the proof of Theorem 2, it easily follows that since I < b <pi,

- l (lin r
lim maxlpn_I(Z,Z,!)-Qn_I.I(z,f)1 ~~
n~oo Izi = r pu

for any r >p and for any!E A p • Consequently, from the definition in (1.16),

(4.4)

the desired result of (1.28) of Theorem 3 when 1 < 0 <pl.
Finally, to show that equality can hold in (4.4), define the triangular inter­

polation matrix i = {ik•n } by means of (cf. (1.13»

18-°)v z-e
wn(z, Z):= ( z _ 1 (zn - 1), n = 1,2,..., (4.5)
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so that i clearly satisfies (1.12) and (1.27). With ](z):=(P-Z)-I, an
element of A p , we have

!Pn_l(r, i,]) - Qn-l,lr,])1 ~ IPn_l(r, i,J) - Pn-k, E,])I

-lpn_l(r,E,J)-Qn_I.I(r,J)I=: VI - V2 • (4.6)

Next, as the interpolation polynomial Pn + I (z, Z,]) of (1.3) can be expressed
as

for any triangular interpolation matrix Z satisfying (1.12), then

for any r >p, so that with (4,5),

(rn_l) 1(P-I)(r-eih -n) I (rn_I)leih-n_11
VI := n ih n - I = n ih -on

(r-p)(p -I) (r-I)(p-e) (p -1)(r-I)lp-e I

(r
n

- I) ( r ) n 1 I - r - n I
~ t5n(pn - I )(r - I)(P + I) = pt5 (1 - p n)(r - I)(P + I) \ '

whence

I! )n (1/2)
VI ~ \jJ . (r _ I)(P + I) ,

Similarly, using (2.6) of [I], it follows that

for all n ~ nl(r,p). (4.7)

so that

~ ~ rn _ pn
V2 := IPn_l(r, E, I) - Qn_I.I(r, 1)1 = (r _ p)(pn _ I) pin'

whence

(
r)n 2

V2~ pl+1 . (r-p)' for all n ~ n2(r, p). (4.8)
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Using (4.7) and (4.8) and recalling that 1 < 0 <pi, it follows from (4.6) that

1/4
(r - 1)(P + 1) ,

for all n ~ n3(r, p), (4.9)

which implies (cf. (1.16» that

- r
Lllr, p, Z) ~ po (r >p). (4.10)

As the reverse inequality holds from (4.4), then

- r
LI I(r, p, Z) = po' (4.11 )

which establishes the desired sharpness in (1.28) of Theorem 3. I
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